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The phenomenological theory of galvanomagnetic effects in a medium of point-group symmetry 
3m, isomorphic to antimony, has been developed for the case that these effects can be described 
in terms of an expansion in powers of the magnetic field. Schemes of coefficients of these powers 
up to and including the fourth power are constructed explicitly. Various experimental arrange- 
ments for a determination of all independent constants are discussed, and the voltages to be ex- 
pected in each case are worked out in detail. A final section lists the relations between the galvano- 
magnetic coefficients of the conductivity and resistivity tensors. 

1. Introduction 

The electrical behavior of antimony is characterized 
by two important features: Electrical conduction is, 
for a metal, appreciably anisotropic, and the Hall 
voltage is not a linear function of the magnetic field 
H, even for relatively small H. These properties have 
made it difficult to evaluate the large number of 
early reports on the galvanomagnetic properties of 
antimony which just list a 'Hall constant' but do not 
include a specification of crystal orientation, in addi- 
tion to giving the Hall voltage as a function of H. 

Measurements are in progress at this laboratory to 
map out the galvanomagnetic effects in single crystals 
of antimony as a function of orientation of the direc- 
tions of current and magnetic field with respect to 
crystal axes. The data have shown that for any given 
set of these directions the variation of the galvano- 
magnetic effects as a function of H can be expressed 
in terms of a rapidly converging power series in H. 
At room temperature, coefficients of powers up to and 
including H a are of importance, and fourth-order 
terms possible also play a role. 

The symmetry of antimony requires relations be- 
tween the coefficients of a given power of H for 
different sets of current and magnetic field directions. 
In this paper we develop the phenomenological theory 
o~ the galvanomagnetic effects in a medium of crystal 
symmetry isomorphic to the point-group symmetry of 
antimony, for the special case in which these effects 
are expressible in a power series in H. 

2. The phenomenological  description 

In anisotropic media the linear relation between cur- 
rent density J and electric field E must be described 
by tensors. With respect to Cartesian coordinate axes, 
the description has the familiar form 

Ji - -  aiiEi or Ei = Qi~J.i. (1) 

* This work has been supported by the U.S. Office of Naval 
Research. 

The effect of a magnetic field H on electrical con- 
duction can be included in (1) by making the con- 
ductivity and resistivity tensors general functions of 
H. The linear relation between E and J is maintained 
since usually the magnetic forces on electrons in a 
metal are much larger than the electrical forces 
(Davis, 1939). aii and ~ij may be general functions of 
H, except for the restrictions imposed by the Onsager 
reciprocity relations which connect otherwise inde- 
pendent irreversible processes. For electrical conduc- 
tion they take the form (Onsager, 1931): 

ai/(H) = a j i ( -H) ;  ~ij(H) = ~ j i ( -H) .  (2) 

In addition to the restriction expressed by (2), 
the tensor components will also be subject to the re- 
strictions imposed by the macroscopic or point sym- 
metry of the crystalline material in question. This 
paper will be concerned with the determination of 
these relations and of the explicit form of the tensors 
(2) for crystals with a point-group symmetry 3m iso- 
morphic to the point-group symmetry of antimony. In 
the case in which the dependence of electrical conduc- 
tion on the magnetic field can be expressed in terms 
of a rapidly converging expansion according to powers 
of the magnetic field, the relations existing between 
the tensor components can be separated into various 
groups connecting coefficients of the same power of H. 

In normal experimental arrangements to determine 
galvanomagnetic effects one measures voltages pro- 
duced by a given primary current. To connect directly 
with experimental results we will carry through the 
full analysis of the symmetry problem for the resis- 
t ivity tensor ~i/. Of course, the same solution applies 
immediately to the conductivity upon intercliange of 
J and E. However, the relations between the coeffi- 
cients of both tensors are somewhat involved. Since 
most theoretical discussions are best carried out in 
terms of the conductivity tensor, we will include a 
section to exhibit explicitly the relation between these 
coefficients. 

The symmetry condition (2) implies that the re- 
sistivity may be written in the form 
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@ij(H) = s i / (H)+aq(H) ,  (3) 

where the two parts have the following symmetry  
properties: 

s i j (H)=  s j i (H)=  s i i ( - H ) '  [ (4) 

aij(H) = -aj i (H)  = - a i / ( -  H) . 

If we develop s and a in powers of H, s is an even 
function, and a an odd function of H:  

si/(H) = @ij + Ai/kzHkHl + Fijkl,~nHkHzHmH~ +. • • , } 

aij(H) = Rii~Hk + Tijkz,nH~HlH~ + . . . .  (5) 

The implied summation in (5) is carried out over all 
possible values of all repeated indices (]c, l, m, n = 
1,2,3). 

The symmetry  of the current-density and electric- 
field indices expressed in (4) applies to each coefficient 
separately. In addition, the convention of summation 
over the magnetic-field indices adopted in (5) implies 
tha t  each coefficient is total ly symmetric in these 
indices. The complete symmetry  specifications are 
shown below: 

@ij = @ji, 

~4ijkl ~ A j i k l  = A i j  (all permutations of kl) 

Fijkl,~ = .F jiklm, = F i ]  (aU permutations of klm, 0 , (6) 

R i j  k = _ R f f k  , 

Ti jk lm = --  Tj ik lm = T i j  (all permutations of klm). 

Our analysis will be restricted to the coefficients 
o, A,  F, R, T. 

3. The  n u m b e r  of independent constants 

The number of the independent constants  for each 
of the coefficients listed in (6), in the symmetry  
scheme proper to antimony, is obtained by group 
character analysis. For this purpose we must deter- 
mine, first of all, the character of the representation 
corresponding to the transformation properties of the 
coefficient in question. This is done most easily by 
correlating these transformation properties to those 
of products of vector and tensor components (Fumi, 
1952a; Juretschke, 1952). Because of the convention 
of summation indicated above, all coefficients trans- 
form, without extra numerical factors, as follows: 

oi~: symmetric second-order tensor; 
Aiikz: product of two symmetric second-order tensors: 
Fi/k~mn: product of a symmetric second-order tensor 

and a totally symmetric fourth-order tensor; 
R~k: product of two axial vectors; 
Tqkz~: product of an axial vector and a totally sym- 

metric third-order tensor. 

The characters of the orthogonal transformations 
belonging to the tensors occurring in this list are 

available in general form (Juretschke, 1951 ; Bhagavan- 
tam & Venkatarayudu, 1951), and the characters 
appropriate to the transformation schemes of the 
coefficients are obtained by constructing the cor- 
responding products. 

In  Table 1 we list the characters appropriate to the 

Table 1. Characters of the transformation group of the 
various coefficients of the magnetic field-depe~dent 

resistivity in the point group 3m 

Classes 
^ No. of independent  

1 (2)3' (3)m-" components  

0ij 6 0 2 2 
Ai]kl 36 0 4 8 
.Fi#.lm n 90 0 6 18 
Riik  9 0 1 2 
Ti/klm 30 0 2 6 

rotation classes of the point group 3m. Because of the 
nature of the variables involved, all effects are un- 
changed under inversion. 

The number of independent components for each 
set of coefficients is obtained directly from the 
orthogonality relations for characters of irreducible 
representations. These numbers are listed in the last 
column of Table 1. They show tha t  the complete 
description of the effect of a magnetic field on the 
conduction properties of antimony, up to fourth- 
power products of the magnetic field components, 
requires specification of 36 independent constants. To 
third-order, the description requires 18 constants, 
while two constants suffice to specify conduction in 
the absence of a magnetic field. 

I t  may  happen, of course, that  some of the above 
constants are numerically equal, or vanish. Non- 
accidental degeneracy of other coefficients may occur 
if, for some reason, the internal symmetry applicable 
to conduction processes is greater than the symmetry 
of structure. 

4. The  coefficient s chemes  

Table 1 lists the number of independent constants for 
each set of coefficients. The number of non-vanishing 
constants in a Cartesian coordinate system adapted to 
the axes of symmetry  will, in general, be larger. In this 
section we derive the complete schemes for the various 
coefficients with respect to a coordinate system spe- 
cified as follows: z is parallel to the threefold axis, 
and the plane of (x, z) is one of the three equivalent 
planes of reflection. 

Transformation from this system of axes, fixed in 
the crystal, to other axes, particularly axes in the 
laboratory system, is straightforward, since in tile 
discussion of the summation over magnetic field 
indices it was specified tha t  all coefficients transform 
strictly like the corresponding products of coordinates. 
This rule will, however, introduce numerical factors for 
some coefficients in the expressions for the coefficient 
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schemes, particularly for the higher powers of H, 
since in these expressions repeated equal terms in the 
summation will appear as a single entry. 

The discussion of the construction of the coefficient 
schemes need be carried out separately for only three 
c a s e s :  q and R, and A and T, respectively, have 
coefficient entries derivable from the same general 
coefficient scheme. 

(A) ~ and R 
The tensor form of ~ is well-known: 

( ~ n O  O )  
%-= 0 ~n 0 . (7) 

0 0 ~3 

The dyadic for R can be constructed directly from 
(7), since Table 1 indicates that  the point symmetry 
group in question does not distinguish between general 
and symmetric second-order tensors. The only precau- 
tion is that, since R has three indices, with the first 
two antisymmetric, one must observe the proper cor- 
relation of first index of ~..~ and the first index pair 
of Rt~k (1 -> 23, 2 -+ 31, 3 -~ 12). 

( R , 3 1 0  0 ) 
R(~:~= 0 R~ a 0 . (8) 

0 0 R~ 3 

Equation (8) is a dyadic between products of elec- 
tric-field and current-density components on the one 
hand, and magnetic-field components on the other. 
The more familiar form of a connection between 
electric field and current density is obtained by 
carrying out the summation over magnetic-field com- 
ponents indicated in (5): 

.R231H 2 - R 2 3 1 H  1 0 J 

(B) A and T 
The discussion of R, above, shows that  it is easier 

to derive the coefficient scheme in the form (8) rather 
than in the form (9). This is particularly so when 
higher powers of H are involved. The coefficient 
schemes for A and T will therefore be derived as a 
connection between products of electric-field and 
current-density components and products of magnetic- 
field components. The direct voltage-currentrelation- 
ship can be constructed without difficulty once the 
first scheme is known. 

In the group 3m the general fourth order tensor has 
14 independent components. A list of all non-vanishing 
components has been given by Fumi (1952b). The 
most direct way of obtaining the coefficient schemes 
of interest here is to introduce the additional sym- 

merry applicable in each case in the general list con- 
strutted by Fumi. 

.4 iju has symmetry within the first and second index 
pairs. The introduction of this symmetry reduces the 
general fourth-order tensor scheme to the form shown 
in Table 2. 

Table 2. Non-vanish ing  second-power galvanomagnetic 
coefficients in  the point  group 3m 

Each  row forms a symmetr ic  componen t  of the  resist ivity 
tensor  

\ HkHz x 9 y2 z2 yz ~ xy 
E~, J1 \ 

x ~ A n A12 Ala --2A24 0 0 
y~ A ~2 A n A ls 2A24 0 0 
z 2 Aal A31 Aa3 0 0 0 
yz -- A42 A4~ 0 2 A u  0 0 
zx 0 0 0 0 2 A  u - -  2Aa9 
xy 0 0 0 0 --2A~a (An--A12) 

In this table index pairs are labelled by a single 
index running from 1 to 6. 

T~ium is antisymmetric in the first two indices, and 
totally symmetric in the last three, and really relates 
a vector to a third-order tensor. However, by associat- 
ing one magnetic-field component, say Hk, with the 
axial vector component E~Jj, T~j~,,, can be thought 
of as relating a general tensor of second order to a 
symmetric tensor of second order. The additional 
symmetry arising from the total symmetry of the 
three factors HkH~Hm is easily introduced explicitly. 
In terms of such an array, the coefficient scheme has 
the form shown in Table 3. 

Table 3. ~Von-vanishing third.power galvanomagnetic 
coefficients in the point  group 3m 

The sum of the  three rows/¢ ----- 1, 2, 3 forms an  an t i symmet r ic  
componen t  of the  resist ivity tensor.  

HzHm x 2 yO z~ yz zx 
(E~, .]j)Hk 

(yz)x 3Tn~ Tn2 Tl l  a -- 2T224 
(zx)y Tno 3Tn2 Tna 2T224 
(xy)z T3a T3al T ~  0 
(Z.V)Z -- T224 T224 0 2Tna 
(xy)x 0 0 0 0 
(yz)y 0 0 0 0 
(xy)y -- Ta2 2 Ta2 ~ 0 "2T331 
(yz)z 0 0 0 0 
(zx)x 0 0 0 0 

xy  

o 0 
0 o 
0 0 
0 0 

2T3s 1 -- 2Tsu 2 
--2T224 2Tin 

0 0 
2Tn3 - -2T~ 

-- 2T2~ 2Trig. 

The three-index notation refers to the first index 
pair, the third index, and the last index pair, in the 
manner shown. I t  should be noted that  in Table 3 
three rows belong to any one product E i J  j. Further- 
more, since the coefficient of E~Ji is the negative of 
that  of EjJ~, interchanges of components of E and J 
are not listed explicitly. 

I t  is obvious that  the scheme of Table 3 can be 
put into a form similar to (9), since the Hall effect is 
normal to H and J in all powers of H. 
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Table 4. Non-vanishing fourth power galvanomagnetic coefficients in the point group 3m 

Each column forms a symmetric component of the resistivity tensor 

\ J~i, J~ x2 
H~H~H, nHn\ 

x ~ F m 

Z ~ F133 
x2Y 2 F l l l +  4F2] 1-- 3F122 
X2Z 2 6F223 
y2z2 6F123 
x"yz 12Fna 
x2zx 0 
x~xy 0 
y~yz 4Fl~ ~ 
y~zx 0 
y~ xy 0 
z2yz -- 4F234 
z2zx 0 
z~xy 0 

y2 z ~ y z z ~c x q 

F2u 35'312 F412 + 2F5.~6 0 
FI1t+F211--F122 3F31o -- (3F41z + 2F526) 0 

~-~133 ~333 0 0 
F m -- 2F2n + 3F122 6F.~12 6F412 0 

6F123 6F813 -- 6F423 0 
6F223 6F313 6F423 0 

6FH4-- 6F1~ ~ -- 12F32 a 12F414 0 
0 0 0 12F4~ 4 
0 0 0 8F412 + 4F526 

-- 6FI14 -- 2F124 4F324 1 2F4~ 4 0 
0 0 0 ] 2.--F414 
0 0 0 4F526 

4F234 0 4~535 0 
0 0 0 4F535 
0 0 0 -- 12F42 ? 

0 
0 
o 
0 
o 
o 
0 

3(F 114+F1.o4) 
Fin + 2F941-- 3F122 

0 
3(FI14 +FLU)  

FI1 l -  2F2u +Fl2~ 
0 

6(F223--F123) 

(c) F 
The coefficients of F transform like a highly sym- 

metric form of a sixth-order tensor, and this symmetry 
can be taken into account from the outset in establish- 
ing the coefficient scheme. Nevertheless, it is just as 
easy to introduce this symmetry explicitly in the most 
general table of components of a sixth-order tensor for 
the point group 3m. Such a list has been constructed 
by Fieschi & Fumi (1953) by systematic application 
of the results of group theory. If we introduce into 
their coefficients the pair symmetry of the first two 
indices and the total symmetry of the last four, we 
obtain the scheme of coefficients shown in Table 4. 
The three contracted indices refer to the first, second 
and third index pair, respectively, and the proper 
numerical coefficients have been introduced to take 
into account repeated terms in the summation. 

An alternative derivation of such coefficient schemes 
has been reported by Kao & Katz (1955). 

5. The ~,eneral relations between field and current 

Although the coefficient schemes of § 4 contain all the 
information, it is convenient to have explicit ex- 
pressions of the field and current relations. These are 
written down below, up to powers of H 3. 

(A ) Linear 

The terms linear in H follow directly from (9): 

E 1 ---- R123J2Ha-R231JaH2 , ] 

E2 -~ -R123JIHs+R231J3H1' i (10) 
E 3 -- R231(J1H2-J2H1) . 

(B) Quadratic 

The coefficient scheme of Table 2 yields the quad- 
ratic terms : 

E1 = j I ( A n H  12 + A12H 22 +A13H32 _ 2A 24H2H3) 

+ J2(( A 1 1 -  A 12)/-/1H 2 - 2A2aH1H3) 

+ J3 (2A ~H1H 3 - 2A a2H1H2) , 

E 2 = J l ( (An-A12)H1H2-2A24H1H3)  
2 2 2 + J2(A12H1 +AllH2 +A13H3 + 2A24H2H3) 

+ J3(A,2(H~-H~) + 2A4,H2H3), 

E 3 = Jl(2A44H1H3-2A42H1H2) 

+ J2(A42(H~-H~)+ 2A~H2H3) 
+ Ja(A 31 (/-/~ + H 2) + A 33H32). 

(ll) 

(yz) (x + y +  z) = 3Tl12(H ~ + H~)H 1 +3Tn3H~H1 

-6T224H1H2H3 , 

= 3Tl12(H 1 + H2)H2 + 3TnsH3H2 (zx) ( x + y + z )  2 2 2 

+3T22 a(H~-H~)H 3 , (12) 

(xy) (x +y  + z) = 3Ta31(H~ + H~)H 3 

+ T322(H~-3H~)H2 + T333H~ • 

From (12) the voltage-current relationship is im- 
mediately: 

J 3T  H + H  H + T  (H2 3H1)H E1 = 2( 331( 2 1 2 2) 3 322 2 __ 2 2 

+ T333 H3) 

-J3(3Tl12(H~ + H~)H2 + 3Tn3H~H2 

+3T22,(H~-H~)H3) , 
= J 3T  H + H  H + T  H 3H1)H E2 -- 1( 331( 2 1 2 2) 3 322( 2 2-- 2 2 

+ T333 H3)  

+ J3(3T112(H~ + H~)H 1 + 3Tl13H~H 1 (13) 

-6T224H1H2H3) , 
E3 = JI(3Tm(H~+H~)H2+3TmH2H2 

+3T22a(H2-H2)H3) 
-J2(3Tn2(H~ + H~)H1 + 3Tl13H~H1 

-6T224H1H2H3) • 

(C) Cubic 
The cubic terms in the voltage-current relation, 

just like the linear terms, are antisymmetric in E 
and J.  Hence only three combinations of the coeffi- 
cients in Table 3 occur. These combinations are: 
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(D) Fourth power 

The fourth-power relationship can be constructed 
without difficulty from Table 4. The correlation follows 
the same rule as the construction of the quadratic 
terms (11) from Table 2. The general expression will 
not be written down explicitly. 

6. Various experimental arrangements 

The conventional galvanomagnetic effects are defined 
primarily by the direction of H with respect to J.  
Below is a list of the various effects, and the notation 
which we will use to identify the respective voltages. 

On a given sample the three voltages are a function 
of the directions of H, J and the lateral faces with 
respect to the crystal axes. The choice of these direc- 
tions in an actual experimental arrangement is 
governed mainly by the desire of obtaining complete 
and clear-cut information from a relatively small 
number of samples. In  antimony, the two important  
directions of current flow are obviously normal or 
parallel to the principal axis. Once the direction of 
J is fixed, H may  be either normal or parallel to J .  
All of these possibilities will be discussed below. The 
choice of the direction of the lateral faces is deter- 
mined primarily by the amount of information one has 
to obtain from a given sample. 

{.4) H perpendicular to J :  
Transverse magneto-resistance: E~. 
Hall effect: - E j × ~ .  
Planar Hall effect (Goldberg & Davis, 1954): E g .  

{B) H parallel to J :  

Longitudinal magneto-resistance: EPj. 

In principle "all the coefficients defined in the 
previous sections can be determined by performing the 
above types of measurements as a function of the 
directions of J and H with respect to the crystallo- 
~aphie  axes. In practice, however, this method is 
not suitable. In the Hall-effect measurements, for in- 
stance, it would require, for a given J,  a new set of 
transverse contacts for each direction of H with 
respect to the crystal axes. Furthermore, it has been 
k n o ~  for a long time tha t  in anisotropic media the 
usual distinction between magneto-resistance effects 
and Hall effects by their dependence on even and odd 
powers of H, respectively, does not apply directly to 
the experimental arrangements listed above. The Hall 
voltage E j× H usually includes contributions which do 
not change sign upon reversal of H; for comparison 
with a theory of ttie Hall effect one must average the 
(luantities Ej×~(H) and E j×H(-H) .  Recently it  was 
pointed out tha t  precisely the even-power contribu- 
tions to the Hall voltage give information about 
additional galvanomagnetic coefficients in germanium 
(Mason, Hewitt  & Wick, 1953). I t  is evident, there- 
fore, that  it is best to perform a straightforward deter- 
mlnation of all galvanomagnetlc coeff~clents without 
attaching the conventional label to one or another 
type of measurement. 

The usual Hall-effect samples are long, thin cylin- 
drical rods. Thus, the geometry of the sample fixes 
the direction of J with respect to the crystal axes. 
The electrical field E in the crystal is determined by 
Ej  and any two mutually perpendicular voltages 
which are normal to J.  For a sample of rectangular 
cross-section, these voltages are conveniently taken as 
the voltages normal to the lateral faces. 

(A) J perpendicular to c, H perpendicular to J 

The directions of J and H with respect to crystal- 
lographic axes are indicated in Fig. 1. 0 is the angle 

Y 

x ( . )  

Fig. 1. Specification of the dh'ection of current and magnetic 
field with respect to crystal axes, for the ease J perpendicular 
to c, H perpendicular to J. 

between J and the x axis. ~ is the angle between H 
and the z axis in the plane normal to J,  and is positive 
in the direction z × J. 

In terms of these angles, the components of J and 
H are: 

J l = J c o s 0 ,  H 1 =  - H s i n 0 s i n c f ,  | 
J ~ = J s i n 0 ,  H , - -  H c o s 0 s i n ~ ,  ] (14) 
J a - - 0 ,  H a =  H c o s ~ .  

In this arrangement the most convenient directions 
o~ the lateral ~aces are those parallel and normal to 
the z axis. Therefore, the electric fields of interest are: 

EJ = E 1 cos O+E 2 sin 0 ,  | 
E z -- E3, J Ezxj  = - E l  sin O+E 2 cos 0 .  

(15) 

The fields (15) are determined by substituting the 
components (14) of H and J in the general expressions 
for the field components (10), (11) and (13) and then 
forming the combinations indicated: 
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E'J = JH2(AI~ sine 9 +  Ala c°s~ 9 

-2A24 cos 30 sin 9 cos 9 ) ,  

E~ = JHRea I sin 9+JH~A49  sin 30 sin ~ 9 

+JHS(3Tl l~  sin a 9 + 3 T l l  a sin 9 c°s~ 9 

+ 3T~e, cos 30 sin e 9 cos 9) , 

E,×: = - J H R  l~a cos 9 + JH~ 2A ea sin 30 sin 0 cos 9 
- JHS(Tse~  cos 30 sin a 9 

+ 3Tsal sine 9 cos 9 + Tsss cosS 9) • 

(16) 

For a given sample, 0 is fixed, while 9 can be varied 
at will. The various coefficients are separated by an 
analysis  of the H- and 9-dependence of the experimen- 
tal  voltages. By  suitable choice of 0, 12 of the 16 
galvanomagnet ic  coefficients can be determined in 
this manner .  

For a given sample, 9 and  0 are fixed, and the only 
degree of freedom is t h e  reversal of H. The most 

J,H 

L.-  

x 

Fig. 2. Specification of the direction of current and magnetic 
field with respect to crystal axes, for the case J parallel 
to H. 

(B) J parallel to c, H perpendicular to J 

The components of J and H with respect to crystal- 
l ographic axes are: 

J1 = 0 ,  H l = H c o s 0 ,  I 
J ~ . = 0 ,  H e = H s i n 0 ,  ] (17) 
Ja = J ,  H z = O. 

0 is the angle between H and the x axis. 
In  this a r rangement  there is no advantage  in a spe- 

cial orientat ion of the lateral  faces. We will therefore 
assume an a rb i t ra ry  orientation. The transverse volt- 
ages mus t  then  be specified with respect to H;  a suit- 
able set is given by  EH and Ej×R. In  terms of the 
field components with respect to crystallographic axes 
we have 

E~ -- E s ,  | 
EH = E l c o s O + E ~ s i n O  , j (18) 
Ej×H = - E l  sin O+E 2 cos 0 .  

Subst i tut ion of the components (17) into (10), (11) 
and (13) and formation of the combinat ions indicated 
in (18) gives: 

E j  = JHeAsz  , | 
E ~  = - J H e A a 9  sin 30 ' / (19) 
Ej×H = J H R ~ z l - J H g A 4 e  cos 3 0 + 3 J H a T l l 9  . 

The only coefficient not obtained in the first measure- 
ment  is Aal. Transverse voltages are of interest  only 
to confirm the previously obtained values of other 
coefficients. 

(C) J parallel to H 

In  the manner  described above all but  three of the 
galvanomagnet ic  coefficients can be determined.  The 
remaining constants, All ,  Asa and A44 measure lon- 
gi tudinal  effects. If 0 and 9 are the angles indicated 
in Fig. 2, the components of J and H are: 

J l =  J c ° s 0 s i n g ,  H I = H c o s 0 s i n g , |  
J ~ = J s i n 0 s i n g ,  H e = H s i n 0 s i n g ,  / (20) 
Ja  -- J cos 9, H a -- H cos 9 • 

convenient  directions of the lateral  faces, due to the  
method  of preparation,  are along z × J and J × (z × J).  
The corresponding fields are given by" 

E~ = (E 1 cos O+E e sin 0) sin 9 + E  a cos 9 ,  | 
E~×j = - E  l s i n O + E g c o s O  , J (21) 
E j× (~× j) = - ( E 1 cos 0 + E~ sin 0) cos 9 + Es sin 9 • 

In  terms of the components J and H (21) becomes: 

E~ = JH~(A  11 sin4 9 + (Ala + As1 + 4A44) 
× sin2 9 c°s2 9-2(Aa2+A~4) 
× sin 30 sin a 9 cos 9+Aaa  cos 4 9 ) ,  

E~×j -- JH( -R l~s+R~31)  sin 9 cos 9 
- JH2(2A24+Aa~)  cos 30 sin ~ 9 cos 9 
+JHa(Ta2~ sin 30 sin a 9 
- 3 ( T a s l - T l l e )  sins 9 cos 9 (22) 
-3Tee  a sin 30 sin ~ 9 c°se 9 
- ( T a s s - 3 T l l a )  sin 9 c°sa 9) , 

Ej×(~×j) = J H ~ ( - A a 2  sin 30 sin a 9 
+ ( A a 1 + 2 A 4 4 - A n )  sins 9 cos 9 
+(2Aea+Aae ) sin 30 sin 9 9 cos~ 9 
- ( A l a + 2 A ~ a - A a s  ) sin 9 c°sS 9) 
-JHa(3T2e4  cos 30 sin e 9 cos 9) • 

All necessary informat ion is obtained from E~, and 
knowledge of the angles 0 and 9. Ej×(~×j) serves as 
confirmation of the other measurement .  

7. T h e  i n v e r s e  coe f f i c i ents  

The previous sections have discussed the coefficients 
which are measured in the normal  exper imental  
s i tuat ion:  voltages are determined for a given set of 
J and H. Theory, however, is pr imar i ly  concerned with 
the inverse relat ionship:  current  flow is calculated 
under  the condition of a given set of E and J (for 
example,  see Davis,  1939). In  isotropic or highly 
symmetr ic  media,  the connection between the co- 
efficients describing the two kinds of s i tuat ion is very 
direct. In  the case of an t imony  the interrelat ions 
become more complex. 
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Equations (3) and (5) define completely the re- 
sistivity tensor. We can define in a similar way the 
conductivity tensor 

(~i (H)  = a i i - P i 1 ~ H ~ - B i 1 ~ H a H  ~ 

- S ~ , , H ~ - I ~ H m - . . . .  (23) 

Except  for sign, there is a complete correspondence 
between the coefficients of resistivity and conduc- 
t ivity,  and both must  exhibit exactly the same sym- 
metry.  In  order to establish a connection between the 
two sets of coefficients we must solve the relation 

a~i~ ~ = ~ (24) 

for the components of the conductivity tensor, in a 
power expansion in H up to cubic terms. In  these 
expressions the coefficient of each product of the 
components of the magnetic field is a combination of 
the parameters (5) of the resistivity tensor; it  corre- 
sponds to the coefficient of the same product of the 
magnetic field components occurring in (23). The 
results of this straightforward, but  lengthy, manipula- 
tion are: 

1 
(A) all -- - -  , 

~n 

R123 
(B) P~23-  ~ ~ 

(c) 
A l l  

B n ---- ~--~ , 

A94 
B 2 4 -  Q~I ' 

A19. 
B12 = e~---~ - l - -  

A31 

-444 
B44 

(D) 3Sll u ---- 

R 9. 231 

Qne~3 ' 

R123R231 . 

~) 11~)33 ½ ~21~33 ' 

3Tn2 R2al (A12_I_A311_ - 
~11~33 ~11~)33 \ ~)11 ~}33/ 

1 
(733 -- ; 

~33 

R231 
P 2 3 1 - - - - -  ; 

QnQa3 

A33 
B 3 3 -  ~323 ' 

A42 
B42 = 

~11~33 ' 

A13 R 2 123 

R331 
2 2 ' 

~11~33 

(25) 

3~113 3Tl13 R231(A13 + A331 
R123A44 R231R223 

-~-2 ~21~}33 ~)31~)33 , 

3S9~4 - 3T224 2 R231A24 R123A42 
~11 ~)33 ~211~3a ~)21~3 3 ' 

3T3s1 R123(A11-~ A19) 
3S331 ~)21 Q311 

_~_ 2R231A44 R123R231 
~21~)33 ~31~33 ' 

= Ta29 ~_ R2s1A42 
$322 ~121 ~21~33 ' 

$333 = T333 2 Rl~3A13 
e21 e31 

R323 

eh  " 

(25) 

These relations indicate tha t  theoretically significant 
results about the properties of anisotropic media can 
be obtained, in general, only from a determination of 
the complete set of experimentally measured coeffi- 
cients. In  particular, it is not obvious tha t  the ap- 
pearance of, say, cubic terms in the experimental 
results is necessarily an indication of a cubic effect in 
the conductivity. 
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